Development of a physiologically based kinetic model for 99m-technetium-labelled carbon nanoparticles inhaled by humans.
نویسندگان
چکیده
Particulate air pollution is associated with respiratory and cardiovascular morbidity and mortality. Recent studies investigated whether and to which extent inhaled ultrafine particles are able to translocate into the bloodstream in humans. However, their conclusions were conflicting. We developed a physiologically based kinetic model for (99m)technetium-labelled carbon nanoparticles (Technegas). The model was designed to analyse imaging data. It includes different translocation rates and kinetics for free technetium, and small and large technetium-labelled particles. It was calibrated with data from an experiment designed to assess the fate of nanoparticles in humans after inhalation of Technegas. The data provided time courses of radioactivity in the liver, stomach, urine, and blood. Parameter estimation was performed in a Bayesian context with Markov chain Monte Carlo (MCMC) techniques. Our analysis points to a likely translocation of particle-bound technetium from lung to blood, at a rate about twofold lower than the transfer rate of free technetium. Notably, restricting the model so that only free technetium would have been able to reach blood circulation resulted in much poorer fits to the experimental data. The percentage of small particles able to translocate was estimated at 12.7% of total particles. The percentage of unbound technetium was estimated at 6.7% of total technetium. To our knowledge, our model is the first PBPK model able to use imaging data to describe the absorption and distribution of nanoparticles. We believe that our modeling approach using Bayesian and MCMC techniques provides a reasonable description on which to base further model refinement.
منابع مشابه
Prediction of the structural and spectral properties for L,L-ethylenedicysteine diethylester (EC) and its complex with Technetium-99m radionuclide
The technetium-99m complex of the L,L-ethylenedicysteine diethylester (EC), of the brain imaging agent, was reported as a good choice for replacement of the renal nuclear medicines like OIH radiopharmaceutical. This present research work studies the structural, electronic and spectral properties of the EC compound and its complex with technetium-99m radionuclide from theoretical insight. All co...
متن کاملThree different procedures in labeling of Ubiquicidin with technetium 99m: a comparative study
Background: UBI 29-41 (a derivative of antimicrobial peptide ubiquicidin) labelled with 99mTc is reported to discriminate between bacterial infections and sterile inflammatory processes. In this study, three lyophilized kit were performed, one of them based on the direct labelling with only SnCl2 as reducing agent , and other two based on 6- hydrazinopyridine-3-carboxylic acid (HYNIC) and trici...
متن کاملDEVELOPMENT OF A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL FOR HUMAN EXPOSURE RISK ASSESSMENT OF METHYLENE DIPHENYL DIISOCYANATE(MDI)
Introduction: Given the lack of a developed physiologically based toxicokinetic (PBTK) model for human systemic exposure assessment of methylene diisocyanate (MDI) and prediction of its urinary metabolites, this study aims to develop a PBTK model for exposure risk assessment of MDI. Methods and Materials: In this study, to assess the potential exposure to the MDI, a PBTK model was constructed ...
متن کاملBinding and diffusion characteristics of 14C EDTA and 99mTc DTPA in respiratory tract mucus glycoprotein from patients with chronic bronchitis.
Measurement of pulmonary clearance of an inhaled aerosol of technetium-99m labelled diethylenetriaminepenta-acetate (DTPA) by external detection methods has been used widely as an index of permeability across alveolar epithelium and bronchial mucosa. To determine the applicability of the tracer to measurement of permeability in the airways the diffusion and binding characteristics of 99mTc DTPA...
متن کاملDistribution of technetium-99m PEG-liposomes during oligofructose-induced laminitis development in horses.
Liposomes are phospholipid nanoparticles used for targeted drug delivery. This study aimed to determine whether intravenous liposomes accumulate in lamellar tissue during laminitis development in horses so as to assess their potential for targeted lamellar drug delivery. Polyethylene-glycol (PEG) coated liposomes were prepared according to the film hydration method and labelled using (99m)Tc-he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inhalation toxicology
دوره 21 13 شماره
صفحات -
تاریخ انتشار 2009